Syllabus Book

B. Tech. (Chemical Engineering)

P P Savani University

School of Engineering

Effective From: 2021-22 Authored by: P P Savani University

CONTENT

Sr. No.	Content	Page No
1	Syllabi of First Year	1-30
2	Syllabi of Second Year	31-69

FIRST YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. CHEMICAL ENGINEERING PROGRAMME AY:2021-22

	_				ing Schem	Examination Scheme									
Sem	Course Code	Course Title	Offered By	Contact Hours					Theory		Practical		Tutorial		Total
	coue		Ľÿ	Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	SESH1070	Fundamentals of Mathematics	SH	2	0	2	4	4	40	60	0	0	50	0	150
	SEME1010	Engineering Graphics	ME	3	4	0	7	5	40	60	40	60	0	0	200
	SEME1020	Engineering Workshop	ME	0	2	0	2	1	0	0	50	0	0	0	50
1	SESH1230	Fundamentals of Chemistry & Chemical Engineering	SH	3	2	0	5	4	40	60	20	30	0	0	150
	SEHV1010	Universal Human Values-I	SH	2	0	0	2	2	100	0	0	0	0	0	100
						Total	20	16							650
	SESH1080	Linear Algebra & Calculus	SH	3	0	2	5	5	40	60	0	0	50	0	150
	SESH1240	Electrical & Electronics Workshop	ME	0	2	0	2	1	0	0	50	0	0	0	50
	SECV1040	Basics of Civil & Mechanical Engineering	CV	4	2	0	6	5	40	60	20	30	0	0	150
2	SECV1080	Mechanics of Solids	CV	4	2	0	6	5	40	60	20	30	0	0	150
	SECE1010	Basics of Computer & Programming	CE	3	2	0	5	4	40	60	20	30	0	0	150
	CFLS1010	Linguistic Proficiency	CFLS	2	0	0	2	2	40	60	0	0	0	0	100
						Total	26	22							750

Department of Applied Science and Humanities

Course Code: SESH1070 Course Name: Fundamentals of Mathematics Prerequisite Course(s): Algebra, Geometry, Trigonometry &Pre-Calculus till 12th Standard level

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme(Marks)										
Theory	Practical	Tutorial	Credit	Theory		Theory		Practical		Practical		Tutorial		Total
				CE	ESE	CE	ESE	CE	ESE					
2	0	2	4	40	60	-	-	50	0	150				

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the course:

To help learners to

- summarize concept of calculus to enhance ability of analysing mathematical problems.
- acquire knowledge and ability to work with differentiation and integration for applications of mathematical techniques in engineering.
- develop the tool of power series for learning advanced Engineering Mathematics.
- analyse and solve system of linear equations and understand characteristics of Matrices.

Section I									
Module No.	Content	Hours	Weightage in %						
1.	Calculus Limits, Continuity, Types of Discontinuity, Successive Differentiation, Rolle's Theorem, LMVT, CMVT, Maxima and Minima.	8	28						
2.	Sequence and Series-I Convergence and Divergence, Comparison Test, Integral Test, Ratio Test, Root Test, Alternating Series, Absolute and Conditional Convergence.	6	20						
	Section II								
Module No.	Content	Hours	Weightage in %						

	Sequence and Series-II		
1.	Power series, Taylor and Macluarin series,	6	20
	Indeterminate forms and L'Hospitals Rule.		
	Matrix Algebra		
	Elementary Row and Column operations, Inverse of	10	
2.	matrix, Rank of matrix, System of Linear Equations,		32
۷.	Characteristic Equation, Eigen values and Eigen vector,	10	52
	Diagonalization, Cayley Hamilton Theorem, Orthogonal		
	Transformation		

List of Tutorials:

Sr.	Name of Tutorial	Hours
No.	Name of Futorial	110ul 5
1.	Calculus-1	2
2.	Calculus-2	2
3.	Integration	2
4	Sequence and Series-1	2
5.	Sequence and Series-2	2
6.	Sequence and Series-3	2
7.	Matrix Algebra-1	2
8.	Matrix Algebra-2	2
9.	Matrix Algebra-3	2
10.	Matrix Algebra-4	2

Text Book:

Title	Author(s)	Publication
Thomas' Calculus	George B. Thomas, Maurice D. Weir	Pearson
	and Joel Hass	
Elementary linear	Howard Anton and Chrish Rorres	Wiley
Algebra		

Reference Book:

Title	Author(s)	Publication
Advanced Engineering	E Kreyszig	John Wiley and
Mathematics		Sons
A textbook of Engineering	N P Bali and Manish Goyal	Laxmi
Mathematics		
Higher Engineering	B S Grewal	Khanna
Mathematics		
Engineering Mathematics	T Veerarajan	Tata Mc Graw Hill
For First Year		

Engineering Mathematics-1	H. K. Dass and Dr. Rama Verma	S. Chand
(Calculus)		

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 marks
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After the completion of the course, the student will be able to

 make use of concepts of limit, continuity and differentiability for analysing mathematical

problems.

- use concepts of Limit, Derivatives and Integrals.
- examine series for its convergence and divergence.
- solve linear system using matrices.

Department of Mechanical Engineering

Course Code: SEME1010 Course Name: Engineering Graphics Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)												
Theory	Practical	Tutorial Cradit	actical Tutorial (The	eory	Pra	ctical	Tut	orial	Total					
Theory	Flactical	Tutoriai	Credit	Cleuit	creuit	Crean	Greun	Creuit	Cleuit	CE	ESE	CE	ESE	CE	ESE	TUtal
03	04	00	05	40	60	40	60	00	00	200						

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- know conventions and the methods of engineering drawing.
- interpret engineering drawings using fundamental technical mathematics.
- construct basic and intermediate geometry.
- improve their visualization skills so that they can apply these skills in developing new products.
- improve their technical communication skill in the form of communicative drawings.
- comprehend the theory of projection.

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	Introduction: Importance of the Course; Use of Drawing Instruments and accessories; BIS – SP – 46; Lettering, Dimensioning and Lines; Representative Fraction; Types of Scales (Plain and Diagonal Scales); Construction of Polygons.	03	05%					
2.	Engineering Curves: Classification and Application of Engineering Curves; Construction of Conics, Cycloidal Curves, Involutes and Spiral along with Normal and Tangent to each.	06	15%					
3.	Principles of Projections: Types of Projections; Introduction of Principle Planes of Projections.	14	30%					

	Projection of Points & Line: Projection of Points in all		
	four Quadrants; Projection of Lines with its inclination		
	to one Referral Plane & two Referral Planes.		
	Projection of Plane:		
	Projection of Planes (Circular and Polygonal) with		
	inclination to one Referral Plane and two Referral		
	Planes; Concept of Auxiliary Projection Method.		
	Section II		
Module No.	Content	Hours	Weightage in %
	Projection and Section of Solids:Projection of solids: Polyhedral, Prisms, Pyramids,Cylinder, Cone, Auxiliary Projection Method, One View,		
4.	Two View and Three View Drawings. Missing View, Rules for Selection of Views; Sectional View, Section Plane Perpendicular to the HP & VP and other Various Positions, True Shape of Sections.	08	14%
5.	Orthographic Projection: Types of Projections: Principle of First and Third Angle Projection -Applications & Difference; Projection from Pictorial view of Object, View from Front, Top and Sides; Full Section View.	07	18%
6.	Isometric Projections and Isometric Drawing: Isometric Scale, Conversion of Orthographic views into Isometric Projection, Isometric View or Drawing.	07	18%

List of Practical:

Sr.	Name of Practical	Hours
No.		
	Introduction sheet (dimensioning methods, different types of line,	
1.	construction of different polygon, divide the line and angle in parts,	08
	use of stencil, lettering)	
2.	Plane scale and diagonal scale	04
3.	Engineering curves	08
4.	Projection of Points & Lines	06
5.	Projection of Planes	08
6.	Projection of solid & Section of solid	10
7.	Orthographic projection	08
8.	Isometric projection	08

Text Book(s):

TitleAuthor(s)Publication

A Text Book of Engineering	P J Shah	S. Chand & Company Ltd.,
Graphics		New Delhi
Engineering Drawing	N D Bhatt	Charotar Publishing House,
		Anand

Reference Book(s):

Title	Author(s)	Publication
Engineering Drawing	P.S.Gill	S. K. Kataria & sons, Delhi
Engineering Drawing	B. Agrawal & C M Agrawal	Tata McGraw Hill, New Delhi
Engineering Drawing made Easy	K. Venugopal	Wiley Eastern Ltd

Web Material Link(s):

• http://nptel.ac.in/courses/105104148/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical/Tutorial which will be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 20 Marks.
- Internal Viva consists of 20 Marks.
- Practical performance/quiz/drawing/test will consist of 30 Marks during End Semester Exam.
- Viva/Oral performance will consist of 30 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the student will able to

- know and understand "Drawing is a language of Engineers."
- interpret general assembly technical drawing.
- create traditions and the strategies for Engineering Drawing.
- evaluate basic and intermediate geometry.
- apply the knowledge of principles of projections.
- develop their hallucination/imagination skills.
- enhance their technical communication skill in the form of talkative drawings.

Department of Mechanical Engineering

Course Code: SEME1020 Course Name: Engineering Workshop Prerequisite Course(s): -

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week)					Exar	ninatio	on Sche	me (M	arks)	
-	Theory	ory Practical Tutorial	orial Credit	The	eory	Prac	ctical	Tute	orial	Total	
'	i neoi y			CE	ESE	CE	ESE	CE	ESE	TULAI	
	0	2	0	1	0	0	50	0	0	0	50

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about the safety measures required to be taken while using working in workshop.
- learn about how to select the appropriate tools required for specific operation.
- learn about different manufacturing technique for production out of the given raw material.
- understand applications of machine tools, hand tools, power tools and welding process.

	Section I			
Module	Content	Hours	Weightage	
No.			in %	
1.	Introduction: Introduction to Various Shops / Sections and Workshop Layouts, Safety Norms to be Followed in a Workshop.	-	-	
2.	Fitting Shop: Introduction of Fitting Shop; Safety; Making a Job as per Drawing including Marking and other Performing Operations.	-	-	
3.	Carpentry and Drilling Shop: Introduction of Carpentry Shop; Preparation of Job as per Drawing including Marking and other Performing Operations.	-	-	

4.	Sheet Metal Shop: Introduction of Sheet Metal Shop; Preparation of Job as per Drawing including Marking and other Performing Operations	-	-
5.	Smithy Shop: Introduction of Sheet Metal Shop; Preparation of Job as per Drawing including Marking and other Performing Operations	-	-
6.	Introduction to Machine Tools: Introduction and Demonstration of various Machine Tools like Lathe, Drilling, Grinding, Hack Saw Cutting etc.	-	-
7.	Introduction to Welding & Plumbing: Introduction and Demonstration of Welding process. Introduction and Demonstration of Plumbing Shop.	-	-

List of Practical:

Sr.	Name of Practical	Hours
No		
1.	Introduction and Demonstration of Safety Norms. Different Measuring	02
	Instruments.	02
2.	To Perform a Job of Fitting Shop.	06
3.	To Perform a Job of Carpentry Shop.	06
4.	To Perform a Job of Sheet Metal Shop.	06
5.	To Perform a Job of Black Smithy Shop.	04
6.	Introduction and Demonstration of Grinding & Hacksaw Cutting	02
	Machine.	02
7.	Introduction and Demonstration of Plumbing Shop & Welding Process.	04

Text Book(s):

Title	Author(s)	Publication
Elements of Workshop	Hajra Chaudhary S.	Media promoters &
Technology Vol. I	К	Publishers
Workshop Technology Vol. I and II	Raghuvanshi B.S.	Dhanpat Rai & Sons

Reference Book(s):

Title	Author(s)	Publication
Workshop Technology Vol. I	W.A.J. Chapman	Edward Donald Publication
Workshop Practices	H S Bawa	Tata McGraw-Hill

Basic Machine Shop Practice Vol.	Tejwani V.K	Tata McGraw-Hill
I, II		

Web Material Link(s):

• <u>http://nptel.ac.in/course.php</u>

Course Evaluation:

Practical:

- Continuous Evaluation Consist of Performance of Practical which will be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 30 Marks.
- Internal Viva consists of 20 Marks.

Course Outcome(s):

After the completion of the course, the student will able to

- use various measuring instruments.
- know the importance of safety norms required in workshop.
- understand the application of various tools required for different operation.
- understand how to manufacture product from given raw material.
- know the use of machine tools, hand tools and power tools.

Department of Science & Humanities

Course Code: SESH1230 Course Name: Fundamentals of Chemistry & Chemical Engineering Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exar	ninatio	on Sche	me (M	arks)	
Theory Practical Tutor	Practical Tutorial	al Tutorial Credit	The	eory	Prac	ctical	Tut	orial	Total	
Theory			al l'utoriai	Cieun	CE	ESE	CE	ESE	CE	ESE
3	2	0	4	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective of the Course:

To help learners to

- present sound knowledge of chemistry fundamentals, enriching students to understand the role of Chemistry in the field of science and engineering.
- inculcate habit of scientific reasoning to do the task rationally.
- give an introduction of chemical engineering & various unit operations to make aware the students about the role of chemical engineer in various chemical industries.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Chemical Bonding and Structure of Molecules	08	20
	General terms: Chemical bond, valence, valence		
	electrons, Bonding and Nonbonding electrons, Lewis		
	symbols, Octet rule.		
	Ionic bond: Definition, Condition for formation of ionic		
	bond, Factors governing formation of ionic bond,		
	examples (NaCl, MgCl ₂ , CaO, Al ₂ O ₃), Characteristics of		
	ionic compounds.		
	Covalent bond: Definition, conditions for covalent		
	bond formation, examples [(single covalent bond: H ₂ ,		
	Cl ₂ , H ₂ O, NH ₃ , CH ₄) (multiple covalent bond: O ₂ , N ₂ ,		
	CO ₂)], General characteristics of covalent compounds,		
	valence bond approach, formation of H ₂ molecule,		
	Concept of hybridization, Hybridization and shape of		

	molecules, Shape of water, ammonia, PCL ₅ and SF ₆ , Limitations of Valence bond theory, VSEPR theory, Fajan's rules.		
	Co-ordinate covalent bond: Definitions, examples		
	(NH ₄ +, H ₃ O+, BF ₄ -, CH ₃ NO ₂ , SO ₃ , AlCl ₃ , SO ₄ - ² , O ₃ and CO.		
	Hydrogen bonding: Definition, conditions for H-bond		
	formation, examples (HF, H ₂ O, NH ₃ , 2-nitrophenol),		
	Types of H-bonds, Characteristics of H-bonded		
	compounds.		
	Metallic bond: Definition, The Electron sea model,		
	explanation to the physical characteristics of metal		
2	based on the electron sea model.	0(10
2.	Electrochemistry	06	10
	Introduction, Arrhenius ionic theory, De-bye Huckel		
	theory of strong electrolytes, activity and activity co- efficient, Conductivity of electrolytes, Kohlrausch's law		
	of independent migration of ions, Ostwald's dilution		
	law, Acids and bases, Concept of pH and pOH, Buffer		
	solutions, Solubility product, common-ion effect,		
	hydrolysis of salts, conductometric titration, transport		
	number.		
3.	Water Technology and Colloids	08	20
	Introduction, Source of water, Impurities of water, Hard		-
	and Soft water, Degree of hardness, Scale and Sludge		
	formation in boiler, Boiler Corrosion, Caustic		
	Embrittlement, Priming and Forming, Softening of		
	water, Potable Water, Break point of chlorination,		
	Desalination of Brackish Water. Lyophilic and		
	Lyophobic colloids, Characteristics of lyophilic and		
	lyophobic sols, preparation of sols, Dispersion methods,		
	Aggregation methods, Purification of sols, Dialysis,		
	optical properties of sols: Tyndall effect.		
	Section II	[]	
Module	Content	Hours	Weightage
No.		0.0	in %
1.	Introduction to Unit Operation	08	20
	Systematic analysis to chemical process, flow sheet		
	symbols for various operations, Forms of Energy,		
	Overall balances, Mass balance and Momentum Balance, total energy balance, Introduction to modes of heat		
	transfer, Introduction to the concepts of mass transfer,		
	Numerical		

2.	Introduction to Reaction Kinetics	08	20
	Introduction to types of reaction, reaction rate, order of		
	reaction, reaction mechanism, Numerical		
3.	Thermodynamics	07	10
	Introduction & basic concepts, Equilibrium, Laws of		
	Thermodynamics, Heat Reservior & Heat Engines,		
	Energy Balances.		

List of Practical/Tutorial:

Sr.	Name of Practical	Hours
No		
1.	Introduction to chemistry laboratory – Molarity, Normality,	2
	Primary, Secondary standard solutions, Volumetric titrations,	
	Quantitative analysis, Quantitative analysis etc.	
2.	Demonstration: Preparation of solutions of different	4
	concentrations	
3.	Determination of alkalinity in the given water sample.	2
4.	Determination of temporary and permanent hardness in water	4
	sample using EDTA as standard solution.	
5.	Conduct metric titration of strong acid vs. strong base.	2
6.	Determination of critical micelle concentration of a surfactant	4
	using conductometry.	
7.	Determination of concentration of unknown solution	2
	spectrophotometrically.	
8.	Determining the strength of ferrous ammonium sulfate with the	4
	help of K ₂ Cr ₂ O ₇ .	
9.	Determination of dissociation constant of strong acid by pH metric	2
	method.	
10.	Determination of cloud point of a surfactant in the presence of salts.	4
	Total	30

Text Book:

Title	Author/s	Publication
Engineering Chemistry (16 th Edition)	P.C. Jain and	Dhanpat Rai publishing
	Monika Jain	company
Introduction to Chemical Engineering	W. Badger	Tata McGraw Hill Education
A textbook of Chemical Engineering	K. V. Narayan	PHI Learning Pvt. Ltd.
Thermodynamics		
An Introduction to Chemical	Charles Hill	Wiley India
Engineering Kinetics and Reactor		
Design		

Reference Book:

Title	Author/s	Publication
Textbook ofEngineering	R. Gopalan, D. Venkappaya,	Vikas Publishing house
Chemistry (4 th Edition)	S. Nagarajan	Ltd.
A textbook of Chemical	G. N. Pandey	Vikas Publishing house
technology (Volume-1)		Ltd.
Essentials of Physical	A.Bahl, B.S. Bahl and G.D.	S. Chand Publishing
Chemistry	Tuli	
Concise Inorganic Chemistry	J.D. Lee	Wiley India
Organic Reaction Mechanisms	V. K. Ahluwalia, R. K.	Norasa Publishing
	Parashar	House
Organic Chemistry (6 th	Robert Thornnton	Pearson Education
edition)	Morrison	
	Robert Neilson Boyd	
Introduction to Chemical	L. B. Andersen & L. A.	Mc Graw Hill
Engineering.	Wenzel	Kogakusha Company
		Ltd

Web Material Links:

 https://books.google.co.in/books?id=Z3033BGuMBEC&printsec=frontcover&dq=e ngineering+chemistry+ebook&hl=en&sa=X&ved=0ahUKEwj9xoiNv3UAhVEL48KH Yg7Ak0Q6AEIITAA#v=onepage&q&f=false

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consist of performance based on practical which should be evaluated out of 10 marks each in the next turn and average of the same will be converted to 10 marks.
- Internal viva component carries 10 marks of evaluation.
- Practical performance/quiz/drawing/test consists of 15 marks evaluation during end semester exam.
- Viva/Oral performance consists of 15 marks evaluation during end semester examination.

Course Outcome(s):

After completion of the course, the students will be able to

- understand the relevance of fundamentals and applications of chemical sciences and chemistry in the field of engineering.
- apply the knowledge of thermodynamics in studying different chemical systems.
- apply the knowledge of Colloids, metals and alloys, their types and their properties.
- have sound knowledge on Electrochemistry.
- give an introduction of chemical engineering to make aware the students about the role of chemical engineer in various chemical industries.
- acquire knowledge on unit processes and unit operations, and to train how to apply mass balance and energy balance on them.

Department of Applied Science and Humanities

Course Code: SESH1080 Course Name: Linear Algebra & Calculus Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exar	ninatio	on Sche	me (M	arks)	
Theory	Practical Tutorial		J Tutorial Cradit		eory	Prac	ctical	Tute	orial	Total
Theory	FIALLILAI	Tutoriai	Cleuit	CE	ESE	CE	ESE	CE	ESE	TOLAT
3	0	2	5	40	60	-	-	50	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about and work with vector space, linear transformation and inner product space.
- apply concepts of linear algebra for solving science and engineering problems.
- introduce the concept of improper integral and Beta-Gamma Function.
- develop the tool of Fourier series for learning advanced Engineering Mathematics.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Vector Space Concept of vector space, Subspace, Linear Combination, Linear Dependence and Independence, Span, Basis and Dimension, Row Space, Column Space and Null Space, Rank and Nullity.	9	20			
2.	Linear Transformation Introduction of Linear Transformation, Kernal and Range, Rank and Nullity, Inverse of Linear Transformation, Rank Nullity Theorem, Composition of Linear Maps, Matrix associated with linear map.	7	15			
3.	Inner Product Space Inner Product, Angle and Orthogonality, Orthogonal projection, Gram- Schmidt process and QR Decomposition, Least square decomposition, Change of basis.	7	15			

	Section II					
Module No.	Content	Hours	Weightage in %			
1.	Beta and Gamma function Improper Integrals, Convergence, Properties of Beta and Gamma Function, Duplication Formula (without proof)	6	14			
2.	Fourier Series Periodic Function, Euler Formula, Arbitrary Period, Even and Odd function, Half Range Expansion, Parseval's Theorem	8	18			
3.	Curve tracing Tracing of Cartesian Curves, Polar Coordinates, Polar and Parametric Form of Standard Curves, Areas and Length in Polar co-ordinates	8	18			

List of Tutorial:

Sr.	Name of Tutorial	Hours
No.		
1.	Vector Space-1	4
2.	Vector Space-2	2
3.	Linear Transformation-1	2
4	Linear Transformation-2	2
5.	Inner Product-1	2
6.	Inner Product-2	2
7.	Beta and Gamma Function-1	2
8.	Beta and Gamma Function-2	2
9.	Curve tracing-1	2
10.	Curve tracing-2	2

Text Book(s):

Title	Author/s	Publication
Thomas' Calculus	George B. Thomas, Maurice D. Weir and Joel Hass	Pearson
Elementary Linear Algebra	Howard Anton and Chrish Rorres	Wiley

Reference Book(s):

Title	Author(s)	Publication
Advanced Engineering Mathematics	E Kreyszig	John Wiley &
		Sons

A textbook of Engineering Mathematics	N P Bali and Manish	Laxmi
	Goyal	
Higher Engineering Mathematics	B S Grewal	Khanna
Engineering Mathematics for First Year	T Veerarajan	Tata Mc Graw
		Hill
Engineering Mathematics-1 (Calculus)	H. K. Dass and Dr. Rama	S. Chand
	Verma	

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous evaluation consists of performance of tutorial which will be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After completion of the course, the student will be able to

- understand the concepts of Vector Space, Linear Transformation and inner product
- space.
- evaluate functions like Gamma, Beta functions & their relation which is helpful to evaluate some definite integral arising in various branch of engineering.
- understand the concept of Fourier series.

Department of Applied sciences & Humanities

Course Code: SESH1240 Course Name: Electrical & Electronics Workshop Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week)Examination Scheme (Marks)										
Theory	Dractical	Tutorial	Crodit	Theor	ry	Pract	ical	Tutor	ial	Total			
Theory	Flattital	Tutoriai	Tutorial		actical Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI
0	2	0	1	0	0	50	0	0	0	50			

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify basic fundamental electronic components in circuits.
- learn to use common electronic component on breadboard.
- understand components of instruments, terminology and applications.

List of Practical:

Sr	Name of Practical	Hours
No		
1	Understanding of electronic component with specification.	2
2	Understanding of Galvanometer, Voltmeter, Ammeter, Wattmeter	2
	and Multimeter	
3	Understanding of breadboard connections	2
4	Drawing and wiring of basic circuits on breadboard	2
5	Verification of Ohm's law	2
6	Half wave, full wave using centre tap transformer and full wave	3
	bridge rectifier	
7	Kirchhoff's laws (KVL,KCL).	3
8	Faraday's laws of Electromagnetic Induction and Electricity Lab	4
9	LDR characteristics	2
10	Study of CRO, measurement of amplitude (voltage) & time period	4
	(frequency)	
11	PCB designing	4

Text Book:

Title	Author/s	Publication

Electronic Principles	Albert Malvino and David J Bates	Mc	Graw	Hill(7th
		Editio	on)	

Reference Book:

Title			Author/s		Publi	cation		
Electronic Devices			Thomas L. Floyd		Pearson (7th Edition)			
Electronic	Devices	and	David A. Be	ll	Oxfor	d Press (5tl	h Editi	on)
Circuits								
Integrated E	lectronics		Jacob	Millman,	Tata	McGraw	Hill	(2nd
			Christos		Editio	n)		

Course Evaluation:

Practical:

- Continuous Evaluation Consist of Performance of Practical which should be evaluated out of 10 for each practical in the next turn and average of the same will be converted to 20 Marks.
- Internal viva consists of 20 marks.

Course Outcome(s):

• After completion of the course, the students will be able to design elementary combinational and sequential circuits.

Department of Civil Engineering

Course Code: SECV1040 Course Name: Basics of Civil & Mechanical Engineering Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Practical	Tutorial	Cradit	Theor	ſy	Pract	ical	Tutor	ial	Total
Theory	FIACULAI	TULOTIAL	Creat	CE	ESE	CE	ESE	CE	ESE	TOLAT
4	2	0	5	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- study the fundamentals of mechanical systems.
- study and appreciate significance of mechanical engineering in different fields of engineering.
- carry out simple land survey and recent trends in civil engineering.
- understand components of building, building terminology and construction materials.

	Section I		
Module No.	Content	Hours	Weightage in %
	Civil Engineering: An Overview		
1.	Introduction, Branches, Scope, Impact, Role of Civil Engineer, Unit of Measurement, Unit Conversion	03	04
	(Length, Area, Volume)		
	Introduction to Surveying and Levelling:		
	Introduction, Fundamental Principles, Classification		
	Linear Measurement: Instrument Used, Chaining on		
	Plane Ground, Offset, Ranging		
2.	Angular Measurement: Instrument Used, Meridian,	07	12
2.	Bearing, Local Attraction	07	12
	Levelling: Instrument Used, Basic Terminologies,		
	Types of Levelling, Method of Levelling		
	Modern Tools: Introduction to Theodolite, Total		
	Station, GPS		
	Building Materials and Construction:		
3.	Introduction (Types and Properties) to Construction	10	14
	Materials Like Stone, Bricks, Cement, Sand, Aggregates,		

	Concrete, Steel. Classification of Buildings, Types of Loads Acting on Buildings, Building Components and their Functions, Types of Foundation and Importance, Symbols Used in Electrical Layout, Symbols Used for Water Supply, Plumbing and Sanitation		
4.	Construction Equipment: Types of Equipment- Functions, Uses. Hauling Equipment-Truck, Dumper, Trailer. Hoisting Equipment- Pulley, Crane, Jack, Winch, Sheave Block, Fork Truck. Pneumatic Equipment-Compressor. Conveying Equipment- Package, Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE.	04	08
5.	Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material	06	12
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics	04	06
2.	Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value	04	06
3.	Basics of Steam Generators: Introduction, Classification, Cochran, Lancashire and Babcock and Wilcox Boiler, Functioning of Different Mountings and Accessories	LAB	12
4.	Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines	12	14
5.	Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive	10	12

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Unit conversation Exercise and Chart preparation of building	02
1.	components	
2.	Linear measurements	02
3.	Angular measurements	02
4.	Determine R. L of given point by Dumpy level. (Without Change Point)	02
5.	Determine R. L of given point by Dumpy level. (With Change Point)	02
6.	Presentation on various topics as in module about recent trends	04
7.	To understand construction and working of various types of boilers	04
8.	To understand construction and working of mountings	04
9.	To understand construction and working of accessories	04
10.	To understand construction and working 2 –stroke & 4 –stroke	02
	Petrol Engines	
11.	To understand construction and working 2 –stroke & 4 –stroke	02
	Diesel Engines	

Text Book(s):

Title	Author(s)	Publication
Elements of Mechanical	S. B. Mathur,	Dhanpat Rai & Sons
Engineering	S. Domkundwar	Publications
Elements of Mechanical	Sadhu Singh	S. Chand Publications
Engineering		
Elements of Civil Engineering	Anurag A. Kandya	Charotar Publication
Surveying Vol. I & II	Dr. B. C. Punamia	Laxmi Publication

Reference Book(s):

Title	Author(s)	Publication
Thermal Engineering	R. K. Rajput	Laxmi Publications
Basic Mechanical	T.S. Rajan	Wiley Eastern Ltd., 1996.
Engineering		
Surveying and Levelling	N. N. Basak	Tata McGraw Hill
Surveying Vol. I	S. K. Duggal	Tata McGraw Hill
Surveying and Levelling	R. Subramanian	Oxford University
Building Construction and	G. S. Birdie and T. D.	Dhanpat Rai Publishing
Construction Material	Ahuja	
Engineering Material	S.C. Rangwala	Charotar Publication

Web Material Link(s):

- <u>http://nptel.ac.in/course.php</u>
- <u>http://nptel.ac.in/courses/105107157/</u>
- <u>http://nptel.ac.in/courses/105101087/</u>
- <u>http://nptel.ac.in/courses/105107121/</u>
- http://nptel.ac.in/courses/105104100/

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the student will be able to

- know the principles and working of basic mechanical systems.
- comprehend importance of mechanical engineering in various fields of engineering.
- know about different civil engineering fields with an overview of building material, building construction and recent developments in civil engineering.

Department of Civil Engineering

Course Code: SECV1080 Course Name: Mechanics of Solids Prerequisite Course(s): -

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Practical Tutorial		Crodit	The	eory	Prac	ctical	Tute	orial	Total
Theory	FIALLILAI	Tutoriai	Cleuit	CE	ESE	CE	ESE	CE	ESE	Total
4	2	0	5	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand different types of forces, systematic evaluation of effect of these forces, behavior of rigid and deformable bodies subjected to various types of forces at the state of rest or motion of the particles.
- understand the stresses developed under the application of force.
- understand the physical and mechanical properties of materials.
- understand behavior of structural element under the influence of various loads.

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	Introduction: Definition of Rigid Body, Deformable Body, Scalar and Vector Quantities, Fundamental Principles of Mechanics: Principle of Transmissibility, Principle of Superposition, Law of Parallelogram of Forces.	8	10					
2.	 Fundamental of Static: Force, Types of Forces, Characteristics of a Force, System of Forces, Composition and Resolution of Forces. Concurrent Forces: Resultant of Coplanar Concurrent Force System by Analytical Method, Law of Triangle of Forces, Law of Polygon of Forces, Equilibrium Conditions for Coplanar Concurrent Forces. 	12	15					

	Non-Concurrent Forces: Moments & Couples, Characteristics of Moment And Couple, Varignon's Theorem, Resultant of Non-Concurrent Forces by Analytical Method, Equilibrium Conditions of Coplanar Non-Concurrent Force System.		
3.	Centroid and Centre of Gravity: Centroid of Lines, Plane Areas and Volumes, Examples Related to Centroid of Composite Geometry, Pappus – Guldinus Theorems.	5	12
4.	Moment of Inertia: Parallel and Perpendicular Axis Theorems, Polar Moment of Inertia, Radius of Gyration of Areas, Examples related to moment of Inertia of Composite geometry.	5	13
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Mechanical Properties of Materials: Introduction, Classification of Materials, Properties Related to Axial, Bending, and Torsional & Shear Loading, Toughness, Hardness, Ductility, Brittleness. Proof stress, Factor of Safety, Working Stress, Load Factor.	2*	10
2.	Simple Stress and Strain: Definition of Stress and Strain, Tensile & Compressive Stresses: Shear and Complementary Shear Strains, Linear, Shear, Lateral, Thermal and Volumetric. Hooke's Law, Stresses and Strain in bars of Varying, Tapering & Composite Section, Principle of Superposition. Elastic Constant, Relation between Elastic Constants.	15	20
3.	Shear Force and Bending Moment: Introduction, Types of Loads, Supports and Beams, Shear Force, Bending Moment, Sign Conventions for Shear Force & Bending Moment. Statically Determinate Beam, Support Reactions, SFD and BMD for Concentrated Load and Uniformly Distributed Load, Uniformly Varying Load, Point of Contra-flexure.	15	20

*(To be covered during lab hours)

List of Practical (Any Ten):

Sr. N	0	Name of Practical	Hours
1.		Equilibrium of coplanar concurrent forces	02

2.	To verify the law of parallelogram of forces	02
3.	To verify the law of polygon of forces	02
4.	To verify the Lami's theorem	02
5.	Equilibrium of parallel force system – simply supported beam	02
6.	Tensile test on Ductile materials.	02
7.	Compression test on Ductile materials	02
8.	Compression test on Brittle Materials	02
9.	Determination of hardness of metals (Brinell/ Rockwell hardness	02
9.	test)	
10.	Determination of impact of metals (Izod/ Charpy impact test)	02
11.	Tutorial on concurrent & Non-concurrent forces	04
12.	Tutorials on C. G & MI	02
13.	Tutorials on SFD & BMD	04

Text Book(s):

Title	Author(s)	Publication
Applied Mechanics	S. B. Junnarkar & H. J.	Charotar Publication
	Shah	
Strength of Materials (SI Units)	R S Khurmi, N Khurmi	S. Chand & Company
		Pvt. Ltd.

Reference Book(s):

Title	Author(s)	Publication
Engineering Mechanics,	Meriam and Karaige,	Wiley-India
Engineering Mechanics:	S Rajsekaran	Vikas Publication
Statics and Dynamics		
Engineering Mechanics of	Popov E.P	Prentice Hall of India
Solids		
Strength of Materials (SI	Er. R . K. Rajput	S. Chand & Company Pvt.
Units)		Ltd.
Mechanics of Structure-Vol.I	Dr. H.J. Shah & S. B.	Charotar Publishing House
	Junarkar	Pvt. Ltd.
Strength of materials	R. Subramanian	Oxford Publications
Strength of materials	S. Ramamrutham	DhanpatRai Publishing
		Company
Strength of Materials (SI	Er. R . K. Rajput	S. Chand & Company Pvt.
Units)		Ltd.

Web Material Link(s):

- http://nptel.ac.in/courses/122104014/
- http://nptel.ac.in/courses/112103108/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the student will be able to

- understand fundamental principles of mechanics, equilibrium, statics reactions and internal forces in statically determinate beams.
- apply principles of statics for determine C.G and M.I of a different geometrical shape and Understand basics of friction and its importance.
- critically analyze problem and solve the problem related to mechanical elements and analyze the deformation behavior for different types of loads.
- understand the different types of stresses and strains developed in the member subjected to axial, bending, shear & torsional effects.
- understand the physical properties of materials.

Department of Computer Engineering

Course Code: SECE1010 Course Name: Basics of Computer and Programming Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/ Week)			Examination Scheme (Marks)							
Theory	Dractical	cal Tutorial Cred		The	eory	Prac	ctical	Tute	orial	Total
Theory	FIACULAI	Tutoriai	creuit	CE	ESE	CE	ESE	CE	ESE	TOLAI
3	2	0	4	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand basic components of computer system.
- identify appropriate approach to computational problems.
- develop logic building and problem solving skill.

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	Introduction to Computer and its Architecture: Introduction and Characteristics, Generation, Classification, Applications, Central Processing Unit,	03	10					
	Communication between Various Units, Processor Speed, Various Input and Output Devices.							
2.	Memory and Operating Systems: Introduction to Memory, Memory Hierarchy, Primary Memory and its Type, Secondary Memory, Classification of Secondary Memory, Various Secondary Storage Devices and their Functioning, their Merits and Demerits, Evolution of Operating System, Types and Functions of Operating Systems,	06	15					
3.	Recent Advances in Computer: Introduction to Emerging Areas like Artificial Intelligence, IoT tools, Data Science, Sensors, 3D Printing, Automization in the field of Civil, Mechanical and Chemical.	05	10					

4.	Computer Programming Language: Introduction to different types of Programming Languages, Flowcharts and Algorithms. Introduction to C Programming Language, Features of C, Structure of C Program, Development of Program, Types of Errors, Debugging and Tracing Execution of Program. Section II	08	15
Module No.	Content	Hours	Weightage in %
1.	Constants, Variables and data Types: Character Set, C tokens, Keyword, Constants and Variables, Data Types - Declaration and Initialization, User define type Declarations Typedef, Enum, Basic Input and Output Operations, Symbolic Constants	05	10
2.	Operators and Expression and Managing I/O operations: Introduction to Operators and its Types, Evaluation of Expressions, Precedence of Arithmetic Operators, Type Conversions in Expressions, Operator Precedence and Associativity. Managing Input and Output, Reading a Character, Writing a Character, Formatted Input, Formatted Output.	07	16
3.	Conditional statement and branching: Decision Making & Branching: Decision Making with If & If Else Statements, If - Else Statements (Nested Ladder), The Switch & go - to Statements, The Ternary (?:) Operator Looping: The While Statement, The Break Statement & The Do. While Loop, The FOR Loop, Jump Within Loops - Programs.	06	12
4.	Arrays and Strings: Introduction to Array, One Dimensional Array, Two Dimensional Arrays, Declaring and Initializing String Variables, Arithmetic Operations on Characters, Putting Strings Together, Comparison of Two Strings, Basic String Handling Functions	05	12

List of Practical:

Sr.	Name of Practical	Hours
No		
1.	Introduction to Basic Command	04
2.	Word Processing, Spreadsheets and Presentation Exercises	06
3.	Introduction to Octave Environment	04

4.	Implementation in C for conditional statement and branching	06
	Implementation of if, ifelse, nested ifelse and switch statements	
	Implementation of while loop, dowhile loop and for loop	
5.	Implementation of 1-D and 2-D array	06
6.	Implementation of in built string functions, application programs of	04
	array and strings	

Use of different libraries will be covered in Practical Assignments.

Text Book(s):

Title	Author(s)	Publication				
Programming in ANSI C	E. Balagurusamy	Tata McGraw Hill				
Introduction to Computer Science	ITL Education Solutions	Pearson Education				
	Limited					

Reference Book(s):

Title	Author(s)	Publication
Programming in C	Ashok Kamthane	Pearson
Let Us C	Yashavant P. Kanetkar	Tata McGraw Hill
Introduction to C	Reema Thareja	Oxford Higher Education
Programming		
Programming with C	Byron Gottfried	Tata McGraw Hill

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of the performance of practical, which will be evaluated out of 10 per each practical. At the end of the semester, the average of the entire practical will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/test consists of 15 marks during End Semester Examination.
- Viva/Oral performance consists of 15 marks during End Semester Examination.

Course Outcomes:

After completion of the course, the student will be able to

- explore new emerging areas of the field.
- apply programming fundamentals to solve real time problems.

SECOND YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B.TECH. SECOND YEAR CHEMICAL ENGINEERING PROGRAMME

Sem	Course Code	Course Name	Teaching Scheme				Examination Scheme							
			Contact Hours			Cradit	Theory		Practical		Tutorial		Total	
			Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	SESH2031	Differential Methods for Chemical Engineers	3	0	2	5	5	40	60	00	00	50	00	150
	SECH2010	Chemical Process Calculation	3	0	1	4	4	40	60	00	00	50	00	150
	SECH2020	Mechanical Operations	3	2	0	5	4	40	60	20	30	00	00	150
3	SECH2030	Unit Processes in Organic Synthesis	3	2	0	5	4	40	60	20	30	00	00	150
	SECH2040	Chemical Engineering Materials and Metallurgy	2	0	0	2	2	40	60	00	00	00	00	100
	CFLS1020	Global Communication Skills	2	0	0	2	2	40	60	00	00	00	00	100
	SECH2910	Industrial Exposure		2		0	2	00	00	100	00	00	00	100
		Total	Total											900
	SESH2022	Numerical & Statistical Analysis	3	0	2	5	5	40	60	00	00	50	00	150
	SECH2050	Fluid Flow Operations	3	2	0	5	4	40	60	20	30	00	00	150
4	SECH2061	Physical, Inorganic & Analytical Chemistry	3	2	0	5	4	40	60	20	30	00	00	150
	SECH2070	Chemical Engineering Thermodynamics-I	3	0	2	5	5	40	60	00	00	50	00	150
	SECH2080	Mass Transfer Operations – I	3	2	0	5	4	40	60	20	30	00	00	150
	SEPD3040	Integrated Personality Development Course-I	2	0	0	2	1	100	0	0	0	0	0	100
	CFLS3010	Foreign Language-I	2	0	0	2	2	40	60	0	0	0	0	100
		Total					25							950

P P Savani University School of Engineering

Department of Science & Humanities

Course Code: SESH2031 Course Name: Differential Methods for Chemical Engineers Prerequisite Course(s): SESH1010-Elementary Mathematics for Engineers

Teaching & Examination Scheme:

Teach	Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Flattital	Tutoriai	Creun	CE	ESE	CE	ESE	CE	ESE	TOLAI
03	00	02	05	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- learn orientation of calculus and its applications in solving engineering problems including differential equations.
- learn introduction of Partial Differential Equations with methods of its solutions.
- learn applications of Integral Transforms for solving linear differential equations.
- learn introduction of Periodic functions and Fourier series with their applications for solving ODEs.

Section I					
Module No.	Content	Hours	Weightage in %		
1.	Ordinary Differential Equation First order ODEs, Formation of differential equations, Solution of differential equation, Solution of equations in separable form, Exact first order ODEs, Linear first order ODEs, Bernoulli Equation, ODEs of Second and Higher order, Homogeneous linear ODEs, Linear Dependence and Independence of Solutions, Homogeneous linear ODEs with constant coefficients, Differential Operators Nonhomogeneous ODEs, Undetermined Coefficients, Variation of Parameters.	10	22		
2.	Partial Differential EquationFormation of First and Second order equations, Solution ofFirst order equations, Linear and Non-liner equations of first,Higher order equations with constant coefficients,Complementary function, Particular Integrals.	07	15		
3.	Integral Transform-A	06	13		

	Laplace Transform, Linearity, First Shifting Theorem, Existence Theorem, Transforms of Derivatives and Integrals, Unit Step Function, Second Shifting Theorem, Dirac's Delta function, Laplace Transformation of Periodic function, Inverse Laplace transform, Convolution		
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Integral Transform-B Introduction of Z transform, Linearity property, Damping rule, Basic theory of Z transform, Inverse Z-transform, Convolutions theorems, Application to Difference Equations	09	21
2.	Fourier Series Periodic function, Euler Formula, Arbitrary Period, Even and Odd function, Half-Range Expansions, Applications to ODEs.	06	14
3.	Fourier Integral and Transformation Representation by Fourier Integral, Fourier Cosine Integral, Fourier Sine Integral, Fourier Cosine Transform and Sine Transform, Linearity, Fourier Transform of Derivatives.	07	15

List of Tutorials:

Sr. No.	Name of Tutorial	Hours
1.	Ordinary Differential Equation-1	2
2.	Ordinary Differential Equation-2	2
3.	Ordinary Differential Equation-3	4
4.	Partial Differential Equation-1	2
5.	Partial Differential Equation-2	4
6.	Laplace Transform	2
7.	z-Transform-1	2
8.	z-Transform-2	2
9.	z-Transform-3	4
10.	Fourier Series-1	2
11.	Fourier Series-2	2
12.	Fourier Integral and Transformation	2

Text Book(s):

Title	Author/s	Publication
Advanced Engineering Mathematics	Erwin Kreyszig	Wiley India Pvt. Ltd.

Reference Book(s):

Title	Author/s	Publication
Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers
Advanced Engineering	R. K. Jain, S.R.K.	Narosa Publishing House Pvt.
Mathematics	Iyengar	Ltd.

Differential Equations for	Steven Holzner	Wiley India Pvt. Ltd.
Dummies		
Higher Engineering Mathematics	H.K. Dass, Er. Rajnish	S. Chand & Company Pvt. Ltd.
	Verma	

Web Material Link(s):

1) http://nptel.ac.in/courses/111105035/

2) <u>http://nptel.ac.in/courses/111106100/</u>

3) http://nptel.ac.in/courses/111105093/

4) http://nptel.ac.in/courses/111108081/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

- grasp the respective 1st and 2nd order ODE and PDE.
- analyze engineering problems (growth, decay, flow, spring and series/parallel electronic circuits) using 1st and 2nd order ODE.
- classify differential equations and solve linear and non-linear partial differential equations.
- understand concepts, formulas, and problem-solving procedures to thoroughly investigate relevant real-world problems.

Department of Chemical Engineering

Course Code: SECH2010 Course Name: Chemical Process Calculations Prerequisite Course(s): --

Teaching & Examination Scheme:

Teach	Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Flactical	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	TOLAI
03	00	01	04	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- know the conventions and the methods of chemical process.
- develop the basic acumen for the Chemical Engineering and its calculations.
- know how to carry out various process calculations.
- improve their analytical skills for various chemical processes.
- improve their technical ability in the form of numerical analysis of chemical problems.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction: Chemical Engineering and Chemical Industry, Steady state and unsteady state processes, Unit Operations, Unit Processes and Process Flow Diagrams.	02	03
2.	Graphics and Basics of Chemical Processes: Graphical methods of curve fittings, Method of least squares, Solution of cubic equations by trial and error method, Conversion of units, Dimensional analysis, Properties of gas, liquid and solid, Equations of state.	03	07
3.	Basic Calculations: State properties: Molecular weight, Compositions, Density, Vapor pressure etc for gas, liquid and solid systems, Thermal properties: Heat capacity, Sensible heat, Latent heat, Heat of reaction, Heat of solution, Enthalpy calculations etc. for gas, liquid and solid systems, Techniques of problem Solution:	09	20

	Analytical, Graphical and Numerical, Gas laws and phase equilibria, Humidity, Saturation and Crystallization.		
4.	Material Balances: Materials balance: Concepts of limiting and excess reactants, Batch, Stage-wise, Continuous and recycle operations, Material balance of systems involving mixing, extraction, distillation, crystallization, chemical reaction and recycle processes, Material balance equations based on conservation principle, Material balances for non-reactive processes (Unit Operations), Material balances for reactive processes.	10	20
	Section II		
Module No	Content	Hours	Weightage in %
1.	Vapour pressure: Vapour pressure plots, Vapour pressure of immiscible liquids and vapour pressure of solutions; Humidity and saturation humidity chart, Super saturation, Distribution of a solute between immiscible and partially miscible liquids, Solubility of gases.	02	05
2.	Thermo physics and Energy Balances: Energy balances for closed and open systems based on energy conservation principle, Energy balances for non- reactive processes (Unit Operations), Energy balances for reactive processes, Coupled material and energy balances for single unit process, Heats of formation, combustion, reaction, solution, dilution, Effect of temperature on heat of reaction, Energy balance of systems without and with chemical reactions, Heat capacity calculations, Enthalpy changes of reactions, dissolution and laws of thermochemistry, Effect of pressure and temperature on heat of reactions.	12	25
3.	Multiple Unit Processes: Introduction to processes with multiple Units; Material balances on processes with recycle, Purge, and bypass, Introduction to DOF analysis and solution strategy for multi- unit process, Degrees of freedom in steady-state processes, Simultaneous material and energy balance problems using flow sheeting codes, Unsteady state material and energy balances.	07	20

Text Book(s):

Title	Author/s	Publication
Stoichiometry	Bhatt, B.I. and Vora, S.M.	Tata McGraw-Hill Publishing Co., New
		Delhi.

Chemical Process	Hougen, O.A., Watson. K.M.	John Wiley & Sons, (CBS Publishers &
Principles Part-I	and Ragatz, R.A.	Distributor, New Delhi).

Reference Book(s):

Title	Author/s	Publication
Basic Principles and Calculation	Himmelblau, D.M.	Prentice Hall, Inc.
in Chemical Engineering	niiiiiieibiau, D.M.	
Introduction to Chemical	S K Ghoshal, S K	Tata McGraw-Hill Publishing
Engineering	Sanyal and S Dutta	Co. Ltd., New Delhi.
Conservation of Mass and	Whitwell J.C. &Jone	McCrow Hill Singapore 1072
Energy	R.K.	McGraw-Hill, Singapore, 1973

Web Material Link(s):

• http://nptel.ac.in/courses/103103039/23

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which should be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 30 marks.
- Numerical Test consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

- know and understand the basics of Chemical Engineering calculations.
- interpret the data for Chemical Engineering process scenarios.
- apply the knowledge of the principles of Chemical Engineering reactions.
- enhance their technical skills in the form of numerical analysis.

Department of Chemical Engineering

Course Code: SECH2020 Course Name: Mechanical Operations Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minatio	on Schei	me (Ma	rks)		
Theory	Practical	Tutorial	Credit	Theory		Prac	ctical	Tut	orial	Total
Theory	Flattital	Tutoriai	Creun	CE	ESE	CE	ESE	CE	ESE	TOLAT
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- understand many basic principles of Chemical Engineering operations such as Size Reduction, Filtration, Sedimentation, Mixing and Agitation etc. and their mathematical co-relation.
- understand basic principles of particle preparation and their characterization.
- study various methods for storage of solids and conveyors available for their transportation.
- understand the performance of different equipment for separation of solids and size reduction

	Section I							
Module	Content	Hours	Weightage					
No.	content	mours	in %					
	Properties of particulate solid							
1.	Introduction to particle technology, Characterization of solid	02	05					
1.	particles, particle size measurement techniques, Mixed	00						
	particles, specific surface of mixture, Particle population.							
	Size reduction and enlargement							
	Types of equipment and their studies, Principles of							
	comminution, Laws of crushing and grinding, Closed and							
2.	open circuit grinding, power requirements, Energy and	10	20					
2.	power required for comminution, Industrial processes for	10	20					
	particle size enlargement, size enlargement equipment							
	comminution, Broad classification, Primary breaking							
	operations, Intermediate crushing by crushers, cone, roll and							

	impact crushers, Ball and fumbling mills—fine grinding, Determination of power consumption.		
3.	Properties of masses of solids Storage of solids: Angle of repose, bulk storage, storage in bins and silos.	02	08
4.	Conveying of solids Codes for characterization of solids, screw conveyers, belt conveyers, bucket elevators, pneumatic conveying of solids, Design of conveyor belts, Mechanical and pneumatic conveying equipment and power consumption.	03	07
5.	Screening - equipment and efficiency Screen analysis, Method of reporting screen analysis, Capacity and effectiveness of screens, Screen analysis, sizing curves, industrial sizing, screening revolving and vibrating screens, Screen efficiency and capacity, Classification: Laws, wet and dry methods, Types of classifiers—stationary, mechanical, centrifugal and hydraulic.	05	10
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Filtration Flow through porous media, Theories of filtration - Principles of filtration, constant rate and constant pressure filtration, Optimum cycle, compressible cakes and filter aids, constant pressure, constant rate filtration, compressible and incompressible cakes, cake resistance, filter media resistance, filter media, filter aids, filtration equipment (batch, continuous), selection criteria, washing of filter cakes, filtration by continuous vacuum and pressure filters.	06	15
2.	Gravity setting and sedimentation Gravity clarifiers, sorting clarifiers, Batch sedimentation, rate of sedimentation, Thickening process and sedimentation, Design of thickeners and clarifiers free and hindered setting, Centrifugal sedimentation: Principles of centrifugal sedimentation, Solid gas separation, liquid solid separation, Centrifugation.	05	10
3.	Mixing Mixing equipment and characteristics, power consumption and efficiency, mixing of powders and pastes: Mixers for cohesive and non-cohesive solids, Mixing Index Agitation and mixing of liquids: Basic stirred tank design, Types of impellers, flow patterns, power consumption and scale up.	06	10
	Separators	06	15

Cyclones and electrostatic precipitator, Flotation,	
Thickeners, Flotation, Physico-chemical principles,	
Chemistry of flotation reagents and their functions, Flotation	
processes, Froth flotation machines, Concentration of	
copper, lead and zinc ores by flotation, Flotation of non-	
sulphide ores of copper and lead, dolomite, fluorspar,	
gypsum, phosphates, manganese, silica, sillimanite, graphite	
and coal, Electrical and magnetic concentration,	
Electrostatic and magnetic separations, dry and wet type	
separators.	

List of Practical:

Sr	Name of Practical	Hours
No		
1.	Determination of particle size by sieve analysis.	02
2.	Determination of the optimum speed and critical speed of a ball mill.	02
3.	Measurement of different bulk properties of powder samples.	02
4.	To study powder compaction behavior using different powder compaction models.	02
5.	Study of particle size reduction by Roll crusher and Jaw crusher	04
6.	Characterization of powder flow ability by Angle of Repose.	04
7.	Obtaining the collection efficiency of cyclone	02
8.	Obtaining settling rates of slurry as function of solid concentration	02
9.	Power consumption in Agitated vessels	02
10.	Study of froth flotation process	02
11.	Study of Plate and Frame filter place	04
12.	Study of Centrifugation process	02

Text Book(s):

Title	Author/s	Publication
Unit Operations of Chemical	W L McCabe and J C Smith	McGraw-Hill International
Engineering		
Principles of Mineral Dressing	A M Gaudin	Tata McGraw-Hill Publishing
		Co. Ltd., New Delhi
Elements of Ore Dressing	A F Taggart	John Wiley and Sons, New
		York

Reference Book(s):

Title	Author/s	Publication
Chemical Engineering Vol II, 6th	J.M. Coulson & J.F.	Elsevier, 2003 or
Ed.	Richardson	Pergamon Press
Unit Operations	G.G. Brown Ed.	John Wiley & Sons, 1950

Transport Processes and		
Separation Process Principles' 4th	C.G. Geankopolis	Prentice Hall India, 2003
Ed,		

Web Material Link(s):

http://nptel.ac.in/syllabus/103107091

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s):

- understand the basic principles of particles preparation and their characterization.
- have an understanding of solid storage and their conveying in chemical process industries.
- have an understanding of design of sedimentation tanks and other solid fluid separation equipment.
- have knowledge about different size reducing equipment and power requirements during size reduction.
- develop an ability to design chemical engineering processes while including economic safety, environment and ethical consideration.

Department of Chemical Engineering

Course Code: SECH2030 Course Name: Unit Processes in Organic Synthesis Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minatio	on Schei	me (Ma	rks)		
Theory	Practical	Tutorial	Credit	Theor		Prac	ctical	Tut	orial	Total
Theory	FIALILAI	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- develop an acumen for various chemical processes used in industries
- develop a mindset for various organic synthesis
- develop an acumen for design and development of process flow diagrams (PFDs) for various chemical processes

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction Definition and importance of unit processes in chemical engineering, Concept of unit operation and unit processes and their role in systematizing the cognitive structure of chemical industries, Classification of unit processes, Chemical process kinetics and Factors affecting, Symbols used in Chem. Engineering, Process flow diagram, Introduction to thermochemistry	04	09
2.	Nitration Introduction to nitration reactions, Nitrating agents, Aromatic Nitration, Kinetics and mechanism of aromatic nitration, Nitration of paraffinic hydrocarbon, Thermodynamics of nitration, Process equipment for technical nitration - schimid and Biazz nitrator, Mixed acid for nitration, D.V.S. value and nitric reaction, Comparison of batch Vs. Cont. nitration, Mfg. of Nitrobenzene,	05	12

	Dinitrobenzene, O-and P-Chloronitrobenzene, tri		
	nitrotoluene.		
3.	Amination by reduction Introduction to Amination reactions, Various methods of reductions and factors affecting it, Iron and acid (Bechamp) reduction, Batch and continuous process for manufacture of Aniline from Nitrobenzene, Continuous process for manufacturing of Aniline from nitrobenzene using catalytic fluidized bed reactor.	05	11
4.	HydrogenationDefinition and scope of hydrogenation, Hydrogen: production and properties, Gas catalytic hydrogenation and hydrogenlysis, Kinetics and thermodynamics of hydrogenation reactions, General principles concerning hydrogenation catalysts, Industrial hydrogenation of fat & oil, Production of methanol from CO2 & H2. Hydrogen production technologies and petroleum fractions.	03	07
5.	Oxidation Definition and Types of oxidative reactions, Oxidizing agents, Liquid phase oxidation with oxidizing compounds, Liquid-phase oxidation with oxygen, Oxidation of toluene with MnO2. Manufacturing of Acetaldehyde from Acetic acid and Manufacturing of Acetic acid from Ethanol; Vapor phase oxidation of Methanol, Benzene and Naphthalene, Apparatus and its M/s. for oxidation reactions.	05	11
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Esterification and Hydrolysis Definition and scope of Esterification, Esterification by organic acids and by carboxylic acid derivatives, Esters by addition to unsaturated systems and inorganic acids, Definition and scope of hydrolysis, Hydrolyzing agents, Materials susceptible to hydrolysis, Kinetics, thermodynamics, and mechanism of hydrolysis, Equipment for hydrolysis with technical operations.	03	06
2.	HalogenationDefinition and scope of halogenation reactions,Thermodynamics and kinetics of halogenation reactionsHalogenating agents, Industrial halogenation with types ofequipment, Manufacturing of Chlorobenzene, Benzene hexa-	05	09
	chloride and vinyl chloride from Ethylene and Acetylene.		

	Definition and scope of sulfonation and sulfation, Chemical		
	and physical factors in sulfonation and sulfation, The		
	desulfonation reaction, Use of SO ₃ , SO ₂ , H ₂ SO ₄ as sulfonating		
	and sulfating agents and their applications, Mfg. of Benzene		
	sulfonates, Sulfation of Dimethyl Ether and Lauryl Alcohol.		
	Amination by ammonolysis		
	Definition & types of reactions, Aminating agents, Physical		
4.	and Chemical factors affecting it. Catalyst used in	04	08
4.	ammonolysis, Kinetics and Thermodynamics of	04	08
	ammonolysis Mfg. of Aniline from chlorobenzene and		
	Nitroaniline from Dichloro Nitro Aniline.		
	Hydrolysis		
	Definition and types of hydrolysis, Hydrolyzing agents,		
_	Kinetics, thermodynamics, and mechanism of hydrolysis,	05	00
5.	Industrial Hydrolysis of fat, hydrolysis of carbohydrates,	05	09
	starch to dextrose, Manufacturing of ethanol from ethylene		
	(shell process) Mfg. of phenol from benzene sulfonic.		
	Polymerization		
6.	Introduction & chemistry of polymerization reactions,	02	08
	classifications of polymers methods of polymerization.		

List of Practical:

Sr	Name of Practical	Hours
No		
1.	Preparation of Urea-formaldehyde Resin	02
2.	Synthesis of Phenol-formaldehyde Resin	02
3.	Manufacturing of m-dinitrobenzene from Nitrobenzene	04
4.	Determination of amount of benzoic acid in given sample	04
5.	Residual Chlorine in water	02
6.	Estimation of phenol by bromination	04
7.	Determination of Ascorbic acid in a given sample	04
8.	Determination of amount of acid neutralize capacity by given antacid	02
0.	sample	02
9.	Preparation of Azo dye	02
10.	Determination of oil absorption value of given pigment sample	04

Text Book(s):

Title	Author/s	Publication
Unit Processing of Organic	Groggins P. H.	Tata-McGraw Hill, New Delhi, 2001
Synthesis, 5 th edition		
Shreve's Chemical Process	Austin G. T	McGraw-Hill Pub., 1994.
Industries, 5 th Edition		
Unit Processes in Organic	Desikan, P and	Chemical Engineering Education
Chemical Industries	Sivakumar, T.C.	Development Centre, IIT Madras, 1982.

Reference Book(s):

Title	Author/s	Publication	
Dryden's Outlines of	Gopalarao. M. &	East-West Pub., New Delhi, 1997.	
Chemical Tech. 2nd Ed.	Sitting M.	East-West Fub., New Denn, 1997.	
Elementary Principles of	Felder R.M.,	John Wiley, New York, 2000.	
Chemical Processes3rd ed.	Rousseau R.W.	John whey, New Tork, 2000.	
Riggel's Handbook of	Kent J.A.	Van Nostrant Reinhold, 1974.	
Industrial Chemistry	Kent J.A.		

Web Material Link(s):

• <u>http://nptel.ac.in/courses/103107082/3</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

- build a basic knowledge of the Fundamental structure of organic molecules and their manufacturing process.
- understand and explain the reactions in organic synthesis.
- correlate the same as per their utility in field of Chemical Engineering.
- understand the various Unit Processes and learn about the chemistry and organic compound.

P P Savani University School of Engineering

Chemical Engineering Materials & Metallurgy

Course Code: SECH2040 Course Name: Chemical Engineering Materials & Metallurgy Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minatio	on Schei	me (Ma	rks)				
Theory	Practical Tutorial		Theory Practical		Tutorial Cradit		eory	Prac	ctical	Tute	orial	Total
Theory	Tactical	Tutoriai	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI	
02	00	00	02	40	60	00	00	00	00	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- identify the different chemicals and related materials and their properties.
- understand the microstructures, crystallography, defects, and phase diagrams of different materials.
- help the students to understand the process involved in chemical and mechanical testing of materials under certain conditions.
- make them aware about the advancements in the area of materials used in chemical and allied industries.

	Section I		
Modul e No.	Content	Hours	Weightage in %
1.	Introduction to Engineering Materials Classification of engineering materials, Engineering requirements from materials, Basics of crystals and their correlated properties, Factors that govern material selection for engineering applications, Micro and macro examination.	02	10
2.	Structure and Imperfections in Crystals Introduction, Unit cells and their lattice structure, coordination number, crystal structure of metals, Atomic packing factor, Crystallographic planes and directions, Polymorphism and Allotropy, Diffusion in solids, Imperfection in crystals and their types.	04	10
3.	Ferrous metals and its Alloys	06	15

	Iron and their alloys - Aluminium, copper, Zinc, lead, Nickel and their alloys with reference to the application in chemical industries. Phase Diagrams and Phase Transformation, TTT and CCT Diagrams. Iron-Iron Carbide and Iron-carbon diagrams, Overview of different types of irons - Wrought iron Pig iron, Cast iron, White Cast Iron, Grey Cast Iron, Malleable Cast Iron and their properties and characteristics, deformation of metals, Types of steel like Chromium, Manganese, Molybdenum and Manganese steels.		
4.	Metals: their behaviours and properties Solidification of metals and an alloy, Nucleation and Growth, Solidification defects, Effects of Structure on Mechanical Properties, Methods to control the grain structure resulting from solidification, Cooling curve of pure metal and alloy, Deformation in polycrystalline materials, Mechanical testing of materials (destructive & non-destructive) testing methods.	03	15
	Section II		
Modul e No.	Content	Hours	Weightage in %
1.	Polymers, Ceramics, and Composites: Methods of fabrication of materials like timber, plastics, rubber, fibres and other polymeric materials, Ceramics, Ceramic Matrix, Crystalline and non-crystalline ceramic systems, Properties of ceramic materials, Glass and refractories, Cement refractories, Alumina, Zirconia, Silicon Carbide, Sialons, Reaction Bonded Silicon Nitride, Processing Composite materials, Fibre reinforced plastic (FRP), Organic materials like wood, plastics, and rubber, Advanced materials like Biomaterials and composites with special reference to the applications in chemical Industries, Polymers - Definition, Classification & characteristics, Types of polymerization, Polymer processing, Smart polymer, Advanced polymer, Blended polymer, self-cleaning polymer surfaces.	10	30
2.	Nano materials Nanomaterials Concept and classification, Nanostructured materials like nanorods, nano shells, nanotubes and nanofluids, synthesis methods for nanomaterials, Top down and bottom approach, various applications of nanomaterials like Environment, Food, Pharmaceutical, Electronic, Sports and Textile industries	05	20

Title	Author/s	Publication
Materials Science and Metallurgy	O. P. Khanna	Dhanpatrai Publication
Chemical Engineering Materials	Rumford F.	Constable and Company
		Limited, 2nd Edition, 1987
Membrane Separation Processes	Kaushik Nath	PHI Pvt. Ltd., 2008
Principles of Colloid and Surface	Hiemenz, P. C., and R.	Marcel Dekker, NY, 1997.
Chemistry, 3rd Edn.	Rajgopalan	Marcer Derker, N1, 1997.
Nano chemistry A chemical	Ozin G. A, Andre C.	Royal society of chemistry,
approach to nanomaterials	Arsenault	UK,2005.

Reference Book(s):

Title	Author/s	Publication		
Callister's Material Science and	R.	Wilow India		
Engineering	Balasubramanian	Wiley India		
Chemical Engineering		Indian Book Distributing Company,		
Materials	Chaudhry H.	2nd Edition, Delhi, 1982		

Web Material Link(s):

• http://nptel.ac.in/downloads/113106032/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- interpret important chemical and mechanical properties and classification of engineering materials and metals.
- define different heat treatment process used in industrial applications.
- understand the different types of metals, alloys and chemical materials.
- analyze different microstructure, crystallography and defects of Chemical Engineering materials and metals.
- identify different destructive & non-destructive testing methods used in the practical field and their applications.
- understand the use powder metallurgy and their application to industries.

P P Savani University School of Engineering

Department of Chemical Engineering

Course Code: SECH2910 Course Name: Industrial Exposure Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minatio	on Schei	me (Ma	rks)							
Theory	Practical	Tutorial	Tutorial Cradit		eory	Prac	ctical	Tute	orial	Total					
Theory	Flactical	Tutoriai	Tutoriai	Tutoriai	Tutorial	Tutoriai		Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI
00	00	00	02	00	00	100	00	00	00	100					

CE: Continuous Evaluation, ESE: End Semester Exam

Objective of the Course:

To help learners to

- get exposed to the industrial spectrum.
- learn the mechanisms of industry/ workplace.
- be aware about work culture and policies of industries.

Outline of the Course:

Sr.	No	Content			
1		Selection of Companies			
2	•	Company Information collection			
3		Report Writing			
4	•	Presentation & Question-Answer			

Course Evaluation:

Sr. No.	Evaluation criteria	Marks
1	Actual work carried & Report Submission	50
2	Final Presentation & Question-Answer session	50
	Grand Total:	100

Course Outcome:

- get acquainted with the industrial scenario.
- be aware about his future prospects in the respective field.
- gain knowledge of work culture and industrial expectations.

Report Writing Guidelines

A. Report Format:

1. Title Page (to be provided by the respective supervisor)

The title page of the project shall give the following information in the order listed:

- Full title of the project as approved by the Mentor;
- The full name of the student/Group of students with enrollment number;
- The qualification for which the project is submitted;
- The name of the institution to which the project is submitted;
- The month and year of submission.
- 2. Project Certification Form

[The form should be duly filled signed by the supervisors.]

3. Acknowledgements

[All persons (e.g. supervisor, technician, friends, and relatives) and organization/authorities who/which have helped in the preparation of the report shall be acknowledged.]

- 4. Table of Contents/Index with page numbering
- 5. List of Tables, Figures, Schemes
- 6. Summary/abstract of the report.
- 7. Introduction/Objectives of the identified problem
- 8. Data Analysis and Finding of Solution
- 9. Application of the identified solution
- 10. Future Scope of enhancement of the Project and Conclusion
- 11. "Learning during Project Work", i.e. "Experience of Journey during Project Duration"
- 12. References(must)
- 13. Bibliography
- 14. Annexures (if any)

B. Guideline for Report Formatting:

- Use A4 size page with 1" margin all sides
- Header should include Project title and footer should contain page number and enrollment numbers
- Chapter Name should be of Cambria font, 20 points, Bold
- Main Heading should be of Cambria font, 14 points, Bold
- Sub Heading should be of Cambria font, 12 points, Bold
- Sub Heading of sub heading should be of Cambria font, 12 points, Bold, Italic
- Paragraph should be of Cambria font, 12 points, no margin at the start of the paragraph
- Line spacing for all content 1.15, before 0, after 0
- No chapter number for references
- Before chapter 1, give page numbers in roman letter

P P Savani University School of Engineering

Department of Science & Humanities

Course Code: SESH2022 Course Name: Numerical & Statistical Analysis Prerequisite Course(s): SESH1020-Linear Algebra & Vector Calculus SESH2031-Differential Methods for Chemical Engineers

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minatio	on Schei	me (Ma	rks)		
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Flactical	Tutoriai	Creun	CE	ESE	CE	ESE	CE	ESE	TOLAI
03	00	02	05	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- provide the knowledge of numerical analysis & statistical methods to the students.
- mentally prepare the students to identify and formulate the engineering problem and obtain their solution.
- inculcate the analytical skill of the students to apply the Numerical & Statistical techniques to the problems of respective field.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Complex Variables Complex numbers with operators and geometric representation, Analytic function, Derivative of complex function, Cauchy-Riemann equation, Trigonometric and Hyperbolic functions, Complex Integration, Conformal Mapping, Linear functional transformations, Cauchy's Integral, Calculation of residue	10	20			
2.	Numerical Solutions of Linear and Non-linear Equations Errors and Their computations, General error formula, Bisection Method, Iteration Method, Newton-Raphson Method, Solution of system of non-linear equation, Solution of linear system, Gauss Elimination	6	13			
3.	Numerical Differentiation and IntegrationInterpolation, Finite Differences, Error in numericaldifferentiation, Cubic Splines Method, DifferentiationFormulae, Numerical solution of ODEs, Picard's Method,	7	17			

	Euler's Method, Runge-Kutta Method, Numerical Integration,		
	Trapezoidal Rule, Simpson's 1/3-rule, Simpson's 3/8-rule,		
	Euler-Maclaurin Formulae		
	Section II		
Module	Content	Hours	Weightage in %
1.	Basics of Statistics Elements, Variables, Observations, Quantitative and Qualitative data, Corss-sectional and Time series data, Frequency distribution, Dot plot, Histogram, Cumulative distribution, Measure of location, Mean, Median, Mode, Percentile, Quartile, Measure of variability, Range, Interquartile Range, Variance, Standard Deviation, Coefficient of Variation, Regression Analysis, Regression line and regression coefficient, Karl Pearson's method	7	15
2.	Probability Distribution Introduction, Conditional probability, Independent events, independent experiments, Theorem of total probability and Bayes' theorem, Probability distribution, Binomial distribution, Poisson distribution, Uniform distribution, Normal distribution.	8	18
3.	Testing of Hypothesis Introduction, Sampling, Tests of significance for parametric test, Null Hypothesis, Type 1 and Type 2 errors, Level of significance, Chi-square test, Student's t-test, Seducer's f-test	7	17

List of Tutorials:

Sr. No.	Name of Tutorial	Hours
1.	Complex Variables-1	4
2.	Complex Variables-2	2
3.	Numerical Solutions of Linear and Non-linear Equations-1	2
4.	Numerical Solutions of Linear and Non-linear Equations-2	4
5.	Numerical Differentiation and Integration-1	2
6.	Numerical Differentiation and Integration-2	2
7.	Basics of Statistics-1	2
8.	Basics of Statistics-2	4
9.	Probability-1	2
10.	Probability-2	2
11.	Testing of Hypothesis-1	2
12.	Testing of Hypothesis-2	2

Text Book(s):

Title	Author/s	Publication
Advanced Engineering Mathematics	Erwin Kreyszig	Wiley India Pvt. Ltd.

		New Delhi.
Probability and Statistics for	Richard A. Johnson	Pearson India
Engineers	Irwin Miller, John Freund	Education Services Pvt.
		Ltd., Noida.

Reference Book(s):

Title	Author/s	Publication
Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers, New Delhi
Advanced Engineering	R. K. Jain, S. R.	Narosa Publishing House, New
Mathematics	K. Iyengar	Delhi.
Introductory Methods of	S. S. Sastry	PHI Learning Pvt. Ltd., New Delhi.
Numerical Analysis		

Web Material Link(s):

- <u>http://nptel.ac.in/courses/111106094/</u>
- <u>http://nptel.ac.in/courses/111106084/</u>
- <u>http://nptel.ac.in/courses/111105035/</u>
- http://nptel.ac.in/courses/111101003/
- <u>http://nptel.ac.in/courses/111105090/</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

- derive numerical solution of linear and non-linear system of equation.
- acquire knowledge of finite differences, interpolation, numerical differentiation and numerical integration.
- select appropriate method to collect data and construct, compare, interpret and evaluate data by different statistical methods.
- apply concept of probability in decision making, artificial intelligence, machine learning etc.

Department of Chemical Engineering

Course Code: SECH2050 Course Name: Fluid Flow Operations Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week) Examination Scheme (Marks)				rks)						
Theory	Practical	Tutorial	Credit	The	eory	Practical		Tut	orial	Total
Theory	Flattital	Tutoriai	Creun	CE	ESE	CE	ESE	CE	ESE	TOLAI
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- get the introductory idea and explanation of basic fundamentals of Fluid Flow Operations which is used in the applications of chemical engineering, Porous media movement, Aerodynamics, hydraulics, Marine Engineering, Gas dynamics etc.
- learn Fluid Properties.
- understand the importance of flow measurement and its applications in Industries and to obtain the loss of flow in a flow system.

	Section I						
Module No.	Content	Hours	Weightage in %				
1. t I I I I I I I I I I I I I I I I I I I	Basic Concept and Fluid statics & its application Scope and Applications of fluid flow, Properties of fluids such as Density, viscosity, surface tension, capillarity effect, vapour pressure. Nature of fluids: Incompressible and compressible fluids, Pressure concepts, Force and Pressure, Pascal's law of Pressure at a point, Pressure measurement by Manometers – U tube, Inclined U tube and Differential, Centre of Pressure, Hydrostatic equilibrium in gravitational and centrifugal field, Hydrostatic forces on surface – Vertical, Horizontal and Inclined, Forces on curved Surfaces, Buoyancy and Buoyant Force, Centre of Buoyancy and Metacenters, Determination of Metacentric Height, Stability of Floating and Submerged	08	11 70				

	Body, Position of metacenter relative to Centre of buoyancy. Manometers, Inclined manometer,		
	Continuous gravity and centrifugal decanter.		
2.	Boundary layers & its applications Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift, Separation of Boundary layer, Streamlined and Bluffed Bodies	04	10
	Kinematics of fluid flow		
3.	Types of fluid flow namely steady and unsteady, Uniform and non- uniform, laminar and turbulent, compressible and incompressible internal and external, one, two-dimensional flow. Newton's Law of Viscosity, Rheological behavior of fluid, capillary viscometer.	04	10
4.	Basic fluid equations & fluid dynamics Bernoulli's equation Euler's Equation, Modified Bernoulli's equation. Major and Minor losses, Equivalent length, flow through pipe in series, parallel, pipe network Application Venturimeter: Horizontal and inclined, Orifice meter, Pitot tube Notches and Weirs: Introduction, classification, Derivation for V – notch, Rectangular notch	06	15
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Flow of compressible fluids and its applications Introduction to compressible flow, flow through pipes, Pipe fitting. Valves, nozzles, Fans, Blowers ejectors and compressors; Continuity equations, Velocity of sound, Stagnation temperature, Processes of compressible flow.	07	15
2.	Flow of Fluids through Solids Form drag - skin drag - Drag coefficient. Flow around solids and packed beds. Friction factor for packed beds. Ergun's Equation - Motion of particles through fluids - Motion under gravitational and centrifugal fields - Terminal settling velocity. Fluidization - Mechanism, types, general properties – applications	08	15
3.	Transportation Classification and types, Centrifugal pumps – Construction and working, Power required, Definitions of heads and efficiency, NPSH, Priming, Cavitations, characteristic curves. Specific speed, minimum speed.	08	20

Reciprocating Pump: Classifications and working.	
Power Consumption in Agitation: Power curves, Power	
No., types of impellers. Introduction to Compressors,	
Fans and Blowers. Types of Valves: Globe valves, Gate	
valves, butterfly valves and non – Return valves.	

List of Practical:

Sr	Name of Practical	Hours
No		
1.	Determine metacentric height of floating body.	02
2.	Measurement of pressure using different types of manometers.	04
3.	Determine Co-efficient of Discharge by venturimeter, Orificemeter and Rotameter.	04
4.	Verification of Bernoulli's apparatus.	02
5.	Measurement of velocity of flow using Pitot tube.	02
6.	Measurement of Friction factor for Different pipes & annulus.	02
7.	Measurement of viscosity using Redwood Viscometer.	02
8.	Determine discharge through triangular/trapezoidal / rectangular notch.	02
9.	Determine different flow patterns by Reynolds's apparatus.	02
10.	Measurement of lift and drag of aerofoil.	02
11.	Measurement of static pressure distribution around aerofoil using wind tunnel.	02
12.	Experiment on viscosity by stoke's law	02
13.	Experiments on characteristics of centrifugal pumps	02

Text Book(s):

Title	Author/s	Publication
Textbook of Fluid Mechanics and	R. K. Bansal	Laxmi Publications
Hydraulic Machines	K. K. Dalisal	Laxiiii Fublications
Introduction to Fluid Mechanics	S.K. Som & G Biswas.	Tata McGraw Hill
and Fluid Machines	S.K. Solli & G Diswas.	Publication
Unit Operations of Chemical	McCabe W.L., Smith J.C., Harriott	McGraw Hill
Engineering	Р.	

Reference Book(s):

Title	Author/s	Publication
Fluid Mechanics	Frank M. White	Tata McGraw Hill
		Publication
Fluid Mechanics	R.K. Rajput	Schand Publication
Fluid Mechanics for Chemical	De Nevers N	McGraw-Hill
Engineers		

Web Material Link(s):

• <u>http://nptel.ac.in/courses/112105171/1</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s):

- understand fundamentals of fluids.
- analyze various flow problems and flow characteristics.
- determine major and minor losses through different pipes.
- apply the concept of fluid mechanics to design various system.

Department of Chemical Engineering

Course Code: SECH2061 Course Name: Physical Inorganic and Analytical Chemistry Prerequisite Course(s): SESH1220 – Chemistry

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week)				g Scheme (Hours/Week) Examination Scheme (Marks)						
	Theory	Practical	Tutorial	Credit	The	eory	Prac	tical	Tute	orial	Total
			Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAT
	03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- provide the basic knowledge of physical, inorganic and analytical chemistry to students in the context of industrial need to make a good foundation in Chemistry which will help to the students in their self-development and to cope up with industries need.
- understand the basics of different chemistry
- make them aware about various analytical techniques used for the analysis of chemical substances
- use physical chemistry and its theoretical principles and experimental techniques to investigate the chemical transformations and Physical changes accompanying them.
- make them aware about the inorganic chemistry and its qualitative analysis.

	Section I		
Module	Content	Hours	Weightage
No.	Content	пошія	in %
	Properties of Liquid and preparation of solution		
	Define the terms: Solute, Solvent and Solution, Different		
	standards of solutions like Primary standards and Secondary		
1.	standards, Definition and different methods of expressing	02	04
	concentration, Definition of the Surface tension, Parachor,		
	Refractive index, Molar refraction, Specific refraction,		
	Viscosity.		
	Electro analytical techniques for analysis		
	Basic concepts, Standard reduction potentials, Measurement		
2.	of overall redox reaction tendency, Introduction to	06	14
	Potentiometry, Electrodes (Reference electrode, Saturated		
	calomel reference electrode, indicator electrode, pH		

		-	
	electrode), potentiometric titration, Karl Fischer titration		
	(End point detection, The coulometric method)		
3.	Phase Rule Introduction, Phase Rule and its merits and demerits, Phase diagrams of single component systems (H ₂ O and Sulphur), two component systems involving eutectic systems (Pb-Ag, Sn-Mg), Applications.	03	07
4.	Nuclear Chemistry Basic terms and concepts, Types of nuclear reactions, Nuclear fission and fusion, nuclear reactors, radiation measurements (Detectors- Gas ionization detectors- principle, Ion chambers- proportional counter, G.M. Counter- scintillation detector- principle, features, Inorganic & organic scintillators, solid state detectors), disposal of nuclear waste.	05	11
5.	Emerging Trends in Green Chemistry Introduction to Green Chemistry, Twelve principles of Green Chemistry with examples, Designing a Green Synthesis, Example of green synthesis (adipic acid, catechol, Methyl Methacrylate).	02	04
6.	Microscopy Techniques Principles, Instrumentation, Analysis of images/artifacts, Applications, AFM (Atomic force microscopy), SEM (Scanning electron microscope), TEM (Transmission electron microscopy), FTIR.	04	10
	Section II	L	
Module No.	Content	Hours	Weightage in %
1.	Corrosion and its Control Introduction and theories of corrosion, Dry corrosion (chemical), Wet corrosion (electrochemical), Bio corrosion, Mechanism of corrosion, Factors influencing corrosion (ratio of anodic to cathodic areas, nature of metal, nature of corrosion product, nature of medium – pH, conductivity, and temperature), Corrosion control and prevention methods, corrosion inhibitors, cathodic and anodic protection and Electroplating. Protective coatings, chemical principles involved, boiler corrosion, inter granular corrosions.	07	17
2.	InstrumentalMethodsOfChemicalAnalysis:Spectroscopic methodsBasic concepts, Instrumentation, Interpretation of data and relevant applications, Ultravioletspectroscopy (UV),Infrared spectroscopy (IR), Nuclear Magnetic Resonance (NMR), Mass Spectrometry.	06	13

3.	Thermal methods of analysis TGA, DTA, DSC (Principle, Instrumentation, Quantitative aspects of curves and/or Interpretation of curves, Applications)	05	10
4.	Separation Techniques Principle, Instrumentation, selection of column and its specifications, applications and Limitations, Planar Chromatography (Paper chromatography, Thin Layer Chromatography), Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC)	05	10

List of Practical:

Sr. No.	Name of Practical	Hours
1.	To determine the strength of the given Hydrochloric acid by Sodium	04
1.	hydroxide conduct metrically.	04
2.	To synthesize Chrome Alum.	04
3.	To determine λ max and concentration of unknown solution of	04
э.	KMnO4 in 2N H2SO4 using Colorimeter.	
4.	Determine the amount of Ba^2 + as $BaSO_4$ in a salt solution.	04
5.	To investigate the reaction between K ₂ S ₂ O ₈ and KI.	04
6.	Conductometric titration of strong acid vs. strong base.	04
7.	Determination of dissociation constant of weak acid by pH metric	04
/.	method.	
8.	Determination of cloud point of a surfactant in the presence of salts.	02

Text Book(s):

Title	Author/s	Publication
Text Book of Engineering	Chawla S.	Dhanpat Rai & Co. Pvt. Ltd., Delhi,
Chemistry		2003.
Engineering Chemistry	Sharma B. K.	Krishna Prakashan Media (P) Ltd,
		Meerut.,2001
Instrumental Methods of	Ewing G. W.	Tata-McGraw Hill., New Delhi, 2001.
Chemical Analysis		
Basis Concept of Analytical	Khopkar S. M.	New Age International Publishers,
Chemistry		1998.
A Text Book of Quantitative	Vogel A. I.	ELBS UK, 5th Edition, 1996.
Chemical Analysis		
A Text Book of Polymer Science	Billmeyer F.	Wiley Interscience, New York, 3rd ed.,
	W.	1984.

Reference Book(s):

Title	Author/s	Publication
Analytical Chemistry for	John Kenkel	CRC Press, Taylor & Francis
Technicians (4 th edition)	John Kenker	Group

Corrosion Engineering Principles and Practice	Pierre R. Roberge	The McGraw-Hill Companies
New-Trends-in-Green- Chemistry	V. K. Ahluwalia, M.Kidwai	Kluwer Academic Publishers, Boston Dordrecht London & Anamaya Publishers, New Delhi
Atomic Force Microscopy	Peter Eaton	Oxford University Press
Fundamentals of Atomic Force Microscopy	Ronald G. Reifenberger	World Scientific Publishing Co
Principles and Practice of Modern Chromatographic Methods	Robards K., Jackson P., Haddad P A.	Elsevier Academic Press
Fundamentals of Analytical Chemistry	Douglas A. S., Donald M. W., Holler H. J., Crouch H. R.	Brooks Cole; 9 th edition
Introduction to Spectroscopy	Donal L. P., Gary M. L., George S. K. , James A. V.	Brooks Cole

Web Material Link(s):

http://nptel.ac.in/courses/105104148/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

- familiarize him/herself with the basics of different chemistries used in chemical industries.
- have theoretical and practical knowledge about modern analytical techniques and its quantitative analysis.
- able to perform in industry for various analytical tools.

Department of Chemical Engineering

Course Code: SECH2070 Course Name: Chemical Engineering Thermodynamics - I Prerequisite Course(s):

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week)				ng Scheme (Hours/Week) Examination Scheme (Marks)						
	Theory	Practical	Tutorial	Tutorial Cradit		eory	Pra	ctical	Tut	orial	Total
			Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	03	00	01	04	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand basic principles of chemical engineering thermodynamics and calculations.
- Examine and select specific data and solve energy transformation problems.
- Learn important applications of laws of chemical engineering thermodynamics in chemical engineering.

	Section I		
Modul e	Conten t	Hours	Weighta ge
No.			in %
1.	Introduction and first law of thermodynamics: The scope of thermodynamics in chemical engineering, application and limitation of thermodynamics, Zeroth law of thermodynamics, Heat engine and heat pump, Joule's experiment, Internal energy, enthalpy, first law of thermodynamics, energy balance for closed system, state function, path function, equilibrium, the phase rule, reversible and irreversible process, Heat capacity, first law of thermodynamics for flow process	6	15
2.	Volumetric Properties of Pure Fluids PVT behavior of pure substances, volume expansivity, isothermal compressibility, Ideal and nonideal gases, Isothermal, isobaric, isochoric, adiabatic and polytropic processes for ideal gas, equation of state for real gases, Virial equation of state, Cubic equation of state and theorem of corresponding states, acentric factor, generalized correlation for gases and liquids.	10	20

3. Modul e	Heat Effects Sensible heat effects, Temperature dependence of the heat capacity, latent heat of pure substances, approximate methods for the estimation of the latent heat of vaporization, standard heat of reaction, standard heat of formation, standard heat of combustion, temperature dependence of standard heat of reaction Section - II Conten t	6 Hours	10 Weightage in %
No.			111 70
1.	Second law of thermodynamics Limitation of first law of thermodynamics, Statements of second law of thermodynamics, Heat engines, Carnot engine, Thermodynamic temperature scale, concept of entropy, entropy changes of an ideal gas, Clausius inequality, Third law of thermodynamics	8	15
2.	Thermodynamic Properties of Fluids The fundamental property relations for homogeneous phases, Maxwell's equation, Mnemonic diagram, Clapeyron equation, entropy – heat capacity relationships, differential equations for entropy, moldified equations for U and H, Effect of temperature, pressure and volume on U, H and S, relationship between Cp and Cv, Joule – Thomson coefficient, Residual properties, Residual properties by equation of state	08	20
3.	Some applications of the laws of thermodynamics Flow processes: continuity equation, energy equation, flow in pipes, flow through nozzles, ejectors, throttling process, compression, Refrigeration: Coefficient of performance, refrigerator capacity, Carnot cycle, vapour – compression cycle, choice of refrigerant, air refrigeration cycle, absorption refrigeration Liquefaction Processes: Vaporization of liquid, free expansion, isentropic expansion	08	20

Text Book(s):

Title	Author/s	Publication
Introduction to Engineering Thermodynamics	J.M. Smith, Hendrick Van Ness, Michael M. Abbott	Mc Grow Hill, New York, 2005
Chemical Engineering Thermodynamics	S. Sundaram	Ahuja Publishers, New Delhi, 2001

A Textbook of Chemical		
Engineering Thermodynamics	K. V. Narayanan	PHI Learning, 2004

Reference Book(s):

Title	Author/s	Publication
Chemical Engineering Thermodynamics	B. F. Dodge	Mc Grow Hill, New York, 1971
Chemical Engineering Thermodynamics	Y. V. C. Rao	Universities Press (1997)
Chemical Process Thermodynamics 3rd	B. G. Kyle	Prentice Hall India, 1994
Ed.		
Chemical Process Principles Part II	Hougen O. A., Watson K.	John Willey & Sons, (CBS Publishers &
	M. and Ragatz R. A.	Distributors, New
		Delhi)

Web Material Link(s):

https://nptel.ac.in/courses/103106070/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Tutorial performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/ Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

- Explain laws of thermodynamics and calculation of thermodynamic properties
- Calculate real gas properties using equation of state
- Calculate heat effects for different system
- Application of laws of thermodynamics in flow processes.

P P Savani University School of Engineering

Department of Chemical Engineering

Course Code: SECH2080 Course Name: Mass Transfer Operations - I Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exai	ninatio	on Sche	me (M	arks)		
Theory	Theory Practical Tutorial		Practical Tutorial Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Tactical	Tutoriai	Greun	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- learn the concept of diffusion in gas, liquid & solid.
- understand the basics of inter-phase mass transfer.
- learn application of gas-liquid operation and simultaneous heat and mass transfer operations.

	Section I				
Module No.	Content	Hours	Weightage in %		
1.	Introduction Introduction to Mass Transfer Operation, Classification of mass transfer	02	05		
2.	Diffusion Introduction, Molecular diffusion, Flux, Models of diffusion, Fick's law, Molecular and eddy diffusion, Molecular diffusion in gases, Steady state molecular diffusion in a binary mixture through constant area - fluids at rest and laminar condition and for gases, A diffusing in non-diffusing B, equimolar counter current diffusion for gases, A diffusing in non-diffusing B, equimolar counter current diffusion for liquids, Diffusion in solids, Some special types of diffusion in solids.	10	20		
3.	Mass Transfer Coefficients and Analogy Equations	06	15		

	Introduction, Types of mass transfer coefficients, Dimensionless groups in mass transfer, Analogy between momentum, heat and mass transfer, Mass transfer coefficients for simple geometrical shapes.		
	Interphase Mass Transfer		
4.	Introduction, Theories of interphase mass transfer – two film, penetration, surface renewal and boundary layer theory.	04	10
	Section II		
Module			Weightage
No.	Content	Hours	in %
	Humidification and dehumidification		
	Introduction, Terminologies used, Adiabatic saturation		
1.	temperature, Wet-bulb temperature, Operation involving gas-liquid contact, Water cooling, Adiabatic Humidification – Cooling, Cooling range and approach, Nonadiabatic operations – evaporative cooling, Equipment for air-water contact, some accessories and operational features of cooling tower.	09	15
	Drying		
2.	Introduction, Drying Equilibria, Some important terminologies, Mechanism and Theory of drying, Drying rate curve- Constant Rate period, Cross circulation, falling rate and through circulation, Continuous drying, Rate of batch drying – Cross circulation and through circulation, Rate of continuous drying, Batch driers – direct and indirect driers, Continuous driers – direct and indirect driers, selection of driers.	07	20
	Crystallization		
3.	Introduction, Solid Liquid equilibria, Solubility data, Supersaturation, Material and energy balance, Crystallization process, Method of nucleation, Crystal growth, Mier's supersaturation theory, Fractional crystallization, crystallization and precipitation, Caking of crystals , Crystallization equipment, Working principle of crystallizers like agitated batch, Swenson- walker, Circulating liquor and magma, Melt crystallization – Suspension based and progressive freezing, Purification, Reactive crystallization.	07	15

List of Practical:

Sr	Name of Practical	Hours
No		

1.	Solid In Air Diffusion (Vaporization Of Naphthalene Balls)	02
2.	To determine the rate of drying for rotary dryer for different air flow rates & different air inlet temperatures.	04
3.	Mass Transfer With/Without Chemical Reaction (Solid-Liquid System – Dissolution Of Benzoic Acid In Aqueous NaOH Solution)	
4.	To calculate the mass transfer coefficient in the Humidification and Dehumidification column.	04
5.	To perform Spray Drying.	02
6.	Vapour In Air Diffusion - To determine the diffusion coefficient of an organic vapor (i.e. CCl ₄) in air.	02
7.	To study mass transfer operation in water cooling tower for different flow & thermos dynamic conditions.	04
8.	Liquid – Liquid Diffusion - To study the effect of temperature on the diffusion coefficient.	04
9.	Natural Draft Tray Dryer - To perform drying test on solids & heat and mass transfer analysis of a drying process.	02
10.	To study Swenson Walker crystallizer.	02

Text Book(s):

Title	Author/s	Publication
Mass Transfer – Principles	A.P. Sinha and Parameshwar	PHI Learning Private
and Operations	De	Limited, New delhi
Mass Transfer concepts	K Ashokan	Universities Press
Unit Operations of Chemical	W L McCabe and J C Smith.	McGraw-Hill
Engineering		International
Mass Transfer Operations	Trebal, R.E.	McGraw-Hill, Inc.

Reference Book(s):

Title	Author/s	Publication
Chemical Engineering Vol II, 6th	J.M. Coulson &	Elsevier, 2003 or Pergamon
Ed.	J.F. Richardson	Press.
Unit Operations	G.G. Brown Ed.	John Wiley & Sons, 1950
Transport Processes and		
Separation Process Principles'	C.G. Geankopolis	Prentice Hall India, 2003.
4th Ed		

Web Material Link(s):

• <u>https://nptel.ac.in/courses/103103035/</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

- familiar with the basic phenomenon of mass transfer involving phases.
- able to apply the mathematical and design concepts of mass transfer in gas liquid systems like absorption, humidification, drying and crystallization.
- gaining good knowledge of required optimum condition for a gas-liquid system.
- familiar with fundamentals of thermodynamics as applied to various processes.
- understand the properties as applied to ideal and real gases.
- understand the equilibrium states for mixture of gases, phases and chemical reaction.
- verify the fundamentals learnt viz., application of thermodynamic laws, solution thermodynamics, phase equilibrium and reaction equilibrium in Chemical Engineering thermodynamics by conducting experiments and carry out the evaluation.